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Laws on Groups

Definition

A law is a non-trivial element w ∈ F (x1, x2, . . . ) in the free group.
w is satisfied in a group G if w(g1, g2, . . . ) = 1 for any g1, g2, · · · ∈ G .

Examples

1 The power law xk is satisfied in any finite group of order k .

2 The commutator law [x1, x2] = x1x2x
−1
1 x−1

2 is satisfied in any abelian
group.

3 The iterated commutator law [x1, [x2, [· · · [xl , xl+1]] is satisfied in any
l-step nilpotent group.

Can a law be satisfied by ’many’ elements but not by all?
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A law satisfied by ’many’ elements???

Definition

Given a finite (more generally, a compact) group G and a law w , define
the probability that w is satisfied in G by:

P(w holds in G ) := Pg1,...,gd∼µ(w(g1, . . . , gd) = 1)

In many cases, high probability of satisfaction implies global satisfaction.

Fundamental question

Given a group that satisfies a law with high probability, how close is it to
satisfying an actual group law?

Example (Gustafson’s Theorem)

Let G be a finite group.
If P([x1, x2] holds in G ) > 5/8, then G is abelian.

*Similar results exist for iterated commutator laws, power laws xk , the metabelian
law, and more.
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Laws on infinite groups
Let G be a finitely generated, infinite group. How to make sense of

P(w holds in G )?

Balls in the Cayley graph

Fix a symmetric generating set S for G and let U(n) be the uniform
measure on the n-ball of the Cayley graph of (G ,S). Define:

P(w holds in G ) := lim sup
n→∞

PU(n) (w(g1, . . . , gd) = 1)

Location of a random walk

Fix a non-degeneratea step distribution ν on G . Then ν∗n is the nth step
distribution with respect to a ν-random walk. Define:

P(w holds in G ) := lim sup
n→∞

Pν∗n (w(g1, . . . , gd) = 1)

afinitely supported distribution, whose support generates G as a semigroup.
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Laws on infinite groups

Probabilistic laws on infinite groups were recently studied by Martino, Tointon,
Valiunas, and Ventura (nilpotent case); Antol’n, Martino, and Ventura
(commutativity); Amir, Blachar, Gerasimova, and Kozma (power laws and more);
and others. For instance:

Theorem (Tointon, 2020)

1 If P([x , y ] = 1 holds in G ) > 5
8 , then G is abelian.

2 If P([x , y ] = 1 holds in G ) > 0 then G is virtually abelian.

Question (Amir-Blachar-Gerasimova-Kozma)

1 Is there an ε > 0 such that if G satisfies a power law xk = 1 with probability
> 1− ϵ, then G satisfies xk = 1?

2 If G satisfies a law with probability 1, does G satisfy that law? a law?

All groups here are finitely generated, and probabilities are taken with respect to
non-degenerate random walk.
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Power laws and Burnside groups

The Burnside problem, 1902

(General.) Is a finitely generated group in which every element has
finite order necessarily finite?

(Bounded.) For which m, n > 0 is the free Burnside group
B(m, n) := ⟨x1, . . . xm | X n = 1 for every word X ⟩ finite?
(Restricted.)

Solutions

Golod-Shafarevich (1964): negative answer to the general problem.

Novikov-Adian (1968): negative answer to the bounded problem with
n > 4381 odd.

Ol’shanskii (1982): concrete construction of B(m, n), n > 1010 odd.
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Probabilistic Burnside groups via Olshanskii’s methods

Theorem (Goffer-Greenfeld, 2023)

There exists a finitely generated G = ⟨S⟩, and k >> 0 such that:

1 G satisfies the law xk = 1 with probability 1 with respect to µ⃗(G ,S);

2 G satisfies the law xk = 1 with probability 1 with respect to µ⃗(G ,ν)

for any finitely supported non-degenerated step distribution ν; and yet

3 G admits a free subgroup, and hence satisfies no group law.

In particular, this answers the two questions of Amir, Blachar, Gerasimova,
and Kozma, and provides the first example of a group that satisfies a
group law with probability 1 but does not satisfy any group law in full.

Our method: (hyperbolic groups and) small cancellation theory
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Tools: hyperbolic groups

Definition

A metric space is called hyperbolic if there exists δ > 0 such that any
geodesic triangle is δ-thin.

Definition

A finitely generated group G = ⟨S⟩ is called hyperbolic if it admits a
hyperbolic Cayley graph.

Example

Finite groups, Z, free groups and groups acting on trees are hyperbolic.
Z2 (and any group containing it) is not hyperbolic.
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Tools: small cancellation theory

Definition

Let G = ⟨S | R⟩, R symmetrized. A maximal common initial segment u
of R1,R2 ∈ R is called a piece. E.g., ab for R1 = abc and R2 = ab2.

Definition

G = ⟨S | R⟩ is said to satisfy C ′(λ) small cancellation condition (scc)
if whenever a subword u ⊂ R is a piece, then |u| ≤ λ|R|.

Example

1 ⟨a, b, c , d | abcbc , abdbd⟩ satisfies C ′(2/5)-scc.

2 Z2 = ⟨a, b | aba−1b−1⟩ satisfies C ′(1/4)-scc.
(Here: R = aba−1b−1, ba−1b−1a, a−1b−1ab, . . . )
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Tools: small cancellation theory

Intuition

In a small-cancellation presentation distinct relations have small overlap.

Lemma

If a finite presentation G = ⟨S | R⟩ is C ′(λ), with λ < 1/6 then G is
non-elementary hyperbolic.
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Tools: small cancellation theory

The approach

Name a property you wish the elements of your group to have.

1 Start with a free group G0 = F (a, b, c).
Enumerate its elements: g1, g2, . . .

2 On the nth step add a small cancellation relation to force gn to have
your desired property. Set Gn = ⟨a, b, c | R1,R2, . . . ,Rn⟩.

3 At the limit group, G = ⟨a, b, c | R1,R2, . . . ⟩, all elements have that
property.

Examples

Olshanskii’s solution to Burnside’s problem.

Osin’s construction of an infinite group in which all non-trivial
elements are conjugate.

Goffer-Lazarovich’s solution for Wiegold’s question from the 70’s.
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