Probabilistic Laws on Infinite Groups joint with Be'eri Greenfeld

Gil Goffer

UC San Diego

October 3, 2023

Laws on Groups

Definition

A law is a non-trivial element $w \in F(x_1, x_2, ...)$ in the free group. w is satisfied in a group G if $w(g_1, g_2, ...) = 1$ for any $g_1, g_2, \dots \in G$.

Examples

- The power law x^k is satisfied in any finite group of order k.
- The commutator law $[x_1, x_2] = x_1 x_2 x_1^{-1} x_2^{-1}$ is satisfied in any abelian group.
- The iterated commutator law [x₁, [x₂, [··· [x_l, x_{l+1}]] is satisfied in any *l*-step nilpotent group.

Can a law be satisfied by 'many' elements but not by all?

2/11

A law satisfied by 'many' elements???

Definition

Given a finite (more generally, a compact) group G and a law w, define the probability that w is satisfied in G by:

$$\mathbb{P}(w \text{ holds in } G) := \mathbb{P}_{g_1, \dots, g_d \sim \mu}(w(g_1, \dots, g_d) = 1)$$

In many cases, high probability of satisfaction implies global satisfaction.

Fundamental question

Given a group that satisfies a law with high probability, how close is it to satisfying an actual group law?

Example (Gustafson's Theorem)

Let G be a finite group. If $\mathbb{P}([x_1, x_2]$ holds in G) > 5/8, then G is abelian.

*Similar results exist for iterated commutator laws, power laws x^k , the metabelian law, and more.

Gil Goffer (UC San Diego)

3/11

Laws on infinite groups

Let G be a finitely generated, infinite group. How to make sense of

 $\mathbb{P}(w \text{ holds in } G)$?

Balls in the Cayley graph

Fix a symmetric generating set S for G and let U(n) be the uniform measure on the *n*-ball of the Cayley graph of (G, S). Define:

$$\mathbb{P}(w \text{ holds in } G) := \limsup_{n \to \infty} \mathbb{P}_{U(n)}(w(g_1, \dots, g_d) = 1)$$

Location of a random walk

Fix a non-degenerate^a step distribution ν on G. Then ν^{*n} is the n^{th} step distribution with respect to a ν -random walk. Define:

$$\mathbb{P}(w \text{ holds in } G) := \limsup_{n \to \infty} \mathbb{P}_{\nu^{*n}}(w(g_1, \ldots, g_d) = 1)$$

^afinitely supported distribution, whose support generates *G* as a semigroup. Gil Goffer (UC San Diego) Probabilistic Burnside Groups October 3, 2023

Laws on infinite groups

Probabilistic laws on infinite groups were recently studied by Martino, Tointon, Valiunas, and Ventura (nilpotent case); Antol'n, Martino, and Ventura (commutativity); Amir, Blachar, Gerasimova, and Kozma (power laws and more); and others. For instance:

Theorem (Tointon, 2020)

1 If
$$\mathbb{P}([x, y] = 1$$
 holds in $G) > \frac{5}{8}$, then G is abelian.

2 If $\mathbb{P}([x, y] = 1 \text{ holds in } G) > 0$ then G is virtually abelian.

Question (Amir-Blachar-Gerasimova-Kozma)

Solution Is there an $\varepsilon > 0$ such that if G satisfies a power law $x^k = 1$ with probability $> 1 - \epsilon$, then G satisfies $x^k = 1$?

2 If G satisfies a law with probability 1, does G satisfy that law? a law?

All groups here are finitely generated, and probabilities are taken with respect to non-degenerate random walk.

5/11

Power laws and Burnside groups

The Burnside problem, 1902

- (General.) Is a finitely generated group in which every element has finite order necessarily finite?
- (Bounded.) For which m, n > 0 is the free Burnside group $B(m, n) := \langle x_1, \dots, x_m \mid X^n = 1$ for every word $X \rangle$ finite?
- (Restricted.)

Solutions

- Golod-Shafarevich (1964): negative answer to the general problem.
- Novikov-Adian (1968): negative answer to the bounded problem with n > 4381 odd.
- Ol'shanskii (1982): concrete construction of B(m, n), $n > 10^{10}$ odd.

Gil Goffer (UC San Diego)

Probabilistic Burnside Groups

Probabilistic Burnside groups via Olshanskii's methods

Theorem (Goffer-Greenfeld, 2023)

There exists a finitely generated $G = \langle S \rangle$, and k >> 0 such that:

- **(**) *G* satisfies the law $x^k = 1$ with probability 1 with respect to $\vec{\mu}_{(G,S)}$;
- **3** *G* satisfies the law $x^k = 1$ with probability 1 with respect to $\vec{\mu}_{(G,\nu)}$ for any finitely supported non-degenerated step distribution ν ; and yet
- **G** admits a free subgroup, and hence satisfies no group law.

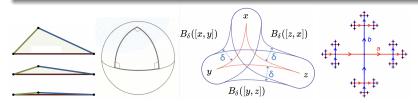
In particular, this answers the two questions of Amir, Blachar, Gerasimova, and Kozma, and provides the first example of a group that satisfies a group law with probability 1 but does not satisfy any group law in full.

Our method: (hyperbolic groups and) small cancellation theory

Tools: hyperbolic groups

Definition

A metric space is called *hyperbolic* if there exists $\delta > 0$ such that any geodesic triangle is δ -thin.



Definition

A finitely generated group $G = \langle S \rangle$ is called *hyperbolic* if it admits a hyperbolic Cayley graph.

Example

Finite groups, \mathbb{Z} , free groups and groups acting on trees are hyperbolic. \mathbb{Z}^2 (and any group containing it) is not hyperbolic.

Gil Goffer (UC San Diego)

Probabilistic Burnside Group

Tools: small cancellation theory

Definition

Let $G = \langle S | \mathcal{R} \rangle$, \mathcal{R} symmetrized. A maximal common initial segment u of $R_1, R_2 \in \mathcal{R}$ is called a **piece**. E.g., *ab* for $R_1 = abc$ and $R_2 = ab^2$.

Definition

 $G = \langle S | \mathcal{R} \rangle$ is said to satisfy $C'(\lambda)$ small cancellation condition (scc) if whenever a subword $u \subset R$ is a piece, then $|u| \leq \lambda |R|$.

Example

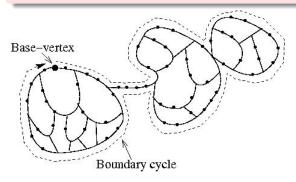
Tools: small cancellation theory

Intuition

In a small-cancellation presentation distinct relations have small overlap.

Lemma

If a finite presentation $G = \langle S | \mathcal{R} \rangle$ is $C'(\lambda)$, with $\lambda < 1/6$ then G is non-elementary hyperbolic.



Tools: small cancellation theory

The approach

Name a property you wish the elements of your group to have.

- Start with a free group G₀ = F(a, b, c).
 Enumerate its elements: g₁, g₂,...
- ② On the nth step add a small cancellation relation to force g_n to have your desired property. Set $G_n = \langle a, b, c \mid R_1, R_2, \dots, R_n \rangle$.
- S At the limit group, G = ⟨a, b, c | R₁, R₂,...⟩, all elements have that property.

Examples

- Olshanskii's solution to Burnside's problem.
- Osin's construction of an infinite group in which all non-trivial elements are conjugate.
- Goffer-Lazarovich's solution for Wiegold's question from the 70's.